Eigenvalues of normalized Laplacian matrix of graphs

Shaowei Sun and Kinkar Ch. Das

Department of Mathematics, Sungkyunkwan University,
Suwon 440-746, Republic of Korea
E-mail: sunshaowei2009@126.com, kinkardas2003@gmail.com

Abstract

Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$. Also let d_i be the degree of vertex $v_i \in V(G)$. The normalized Laplacian matrix of the graph G is denoted by $L(G) = (L_{ij})$ and is defined by

$$
L_{ij} = \begin{cases}
1 & \text{if } i = j \text{ and } d_i \neq 0 \\
-\frac{1}{\sqrt{d_i d_j}} & \text{if } v_i v_j \in E(G) \\
0 & \text{otherwise.}
\end{cases}
$$

In this talk, we discuss some bounds on the largest normalized Laplacian eigenvalue of graph G in terms of graph parameters. Moreover, we give the results on the normalized Laplacian eigenvalues of graph G. Finally, we present some results of the effect on the largest and the second smallest normalized Laplacian eigenvalues by grafting edges.

Key Words: Normalized Laplacian matrix, Normalized Laplacian eigenvalues, Triangulation, Maximal Planar graph, Covering number

References

