Application of Navier-Stokes Equation using the Least-Squares Method

RyeongKyung Yoon, Eunjung Lee

1) Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, KOREA

ABSTRACT

We apply the least-squares method to solve two different nonlinear problems which are derived from the Navier-Stokes equation

\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f}. \]

(1)

Firstly we find an approximation of a solution to the stationary incompressible Newtonian Navier-Stokes equation in 3D. To linearize nonlinear system, we use the Modified Picard method and Newton’s method. We prove the well-posedness of minimization problems with respect to each linearization method.

Moreover, we consider the glaciology problem. Since the ice sheets move slowly, we assume that glaciers are incompressible non-Newtonian fluid. In similar way, we establish the minimization problem and prove the existence of a unique solution. After that, this work presents the numerical computations depending on condition of the viscosity \(\mu \).

REFERENCES