Strong edge-colorings of sparse graphs

Ilkyoo CHOI¹, Jaehoon KIM², Alexandr V. KOSTOCHKA³, and André RASPAUD⁴

1) Department of Mathematical Sciences, Daejeon, Korea
2) School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
3) University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
4) LaBRI (Université de Bordeaux), Talence Cedex, France

ABSTRACT

A strong k-edge-coloring of a graph G is a mapping from $E(G)$ to $\{1, 2, \ldots, k\}$ such that every two adjacent edges or two edges adjacent to the same edge receive distinct colors. The strong chromatic index $\chi'_s(G)$ of a graph G is the smallest integer k such that G admits a strong k-edge-coloring. We give bounds on $\chi'_s(G)$ in terms of the maximum degree $\Delta(G)$ of a graph G when G is sparse, namely, when G is 2-degenerate or when the maximum average degree $\text{Mad}(G)$ is small. We prove that the strong chromatic index of each 2-degenerate graph G is at most $5\Delta(G) + 1$. Furthermore, we show that for a graph G, if $\text{Mad}(G) < 8/3$ and $\Delta(G) \geq 9$, then $\chi'_s(G) \leq 3\Delta(G) - 3$ (the bound $3\Delta(G) - 3$ is sharp) and if $\text{Mad}(G) < 3$ and $\Delta(G) \geq 7$, then $\chi'_s(G) \leq 3\Delta(G)$ (the restriction $\text{Mad}(G) < 3$ is sharp).